A-CLASS® Highly Cross-Linked Polyethylene

Wear Less.

• 92% or Greater Reduction in Wear Compared to Conventional Poly

- Undetectable Free Radicals
- No Oxidation

A-CLASS[®] Highly Cross-Linked Polyethylene

- Highly cross-linked polyethylene refers to UHMWPE exposed to radiation doses in excess of 4 MRad¹ (A-CLASS[®] Poly = 7.5 MRad)
- Increasing cross-linking = increasing wear resistance + decreasing mechanical properties
- Balanced processing of A-CLASS[®] polyethylene drastically reduces wear while maintaining good mechanical properties

A-CLASS® Highly Cross-Linked Poly vs. Conventional Poly

- Wear induced osteolysis has been recognized as an important clinical issue with conventional poly²
- Highly cross-linked polyethylene was introduced in the mid 1990's to improve the bearing wear characteristics of THA and allow for larger heads
- Wright testing shows a 92% or greater wear reduction for A-CLASS[®] polyethylene vs Wright conventional polyethylene³

Poly Material Selection

- Wright uses compression molded GUR 1020 UHMWPE
- GUR 1020 has a higher impact strength, tensile strength, and yield strength than GUR 1050⁴

Product	Material ¹
A-CLASS [®] (Wright)	GUR 1020
Marathon [®] (DePuy)	GUR 1050
Longevity [®] (Zimmer)	GUR 1050
Crossfire [®] (Stryker)	GUR 1050
Durasul [®] (Zimmer)	GUR 1050
X3® (Stryker)	GUR 1020
E1 [®] (Biomet)	GUR 1050

3 Heat Treatment

- Wright has developed a proprietary thermal remelting cycle that removes free radicals
- Remelting has been shown to eliminate more free radicals than below-melt procedures⁵
- This process has been shown to improve the oxidative stability of the material⁶
 - Validated in natural aging study: No detectable oxidation after wear testing to 5 Mc and aging in air for 3 years!
 - Validated in accelerated aging study: No detectable oxidation!
- Wright remelting cycle eliminates need for anti-oxidant doping (i.e. Vitamin E)

Product	Heat Treatment ¹
A-CLASS [®] (Wright)	Remelted
Marathon [®] (DePuy)	Remelted
Longevity [®] (Zimmer)	Remelted
Crossfire [®] (Stryker)	Below Melt
Durasul [®] (Zimmer)	Remelted
X3 [®] (Stryker)	Below Melt
E1® (Biomet)	Below Melt*

*Heated during diffusion of Vitamin E.

2 Cross-Linking Process

- Wright's A-CLASS[®] Poly is Irradiated with 7.5 MRads
- Higher radiation dose = more cross-linking, slightly better wear resistance, and weaker mechanical properties
- Wright has found an optimum balance of enhanced wear properties while maintaining important mechanical properties of the material

Product	X-Link Dose ¹
A-CLASS [®] (Wright)	7.5 MRad
Marathon [®] (DePuy)	5 MRad
Longevity [®] (Zimmer)	10 MRad
Crossfire® (Stryker)	10.5 MRad
Durasul® (Zimmer)	9.5 MRad
X3® (Stryker)	9 MRad
E1® (Biomet)	10 MRad

4 Final Sterilization

- All polyethylene liners require post-processing sterilization
- Most common sterilization methods
 - Ethylene oxide (EtO)
 - Doesn't add free radicals⁷
 - Gas plasma
 - Doesn't add free radicals⁸
 - Gamma radiation
 - Adds free radicals⁹
- Sterilization without radiation enhances short and long-term oxidative resistance in simulator study¹⁰ and in shelf aging study¹¹

Product	Final Sterilization ¹
A-CLASS [®] (Wright)	ETO
Marathon [®] (DePuy)	Gas Plasma
Longevity [®] (Zimmer)	Gas Plasma
Crossfire [®] (Stryker)	3 MRad gamma-N2
Durasul [®] (Zimmer)	ETO
X3 [®] (Stryker)	Gas Plasma
E1 [®] (Biomet)	Gamma

References

- 1. Stephen Kurtz, PhD, UHMWPE Biomaterials Handbook, Second Edition: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices (San Diego: Elsevier Academic Press, 2009), p55.
- 2. Bono JV, Sanford L, Toussaint JT. Severe polyethylene wear in total hip arthroplasty. Observations from retrieved AML PLUS hip implants with an ACS polyethylene liner. *J Arthroplasty*. Apr 1994;9(2):119-125.
- 3. Data on file at Wright.
- 4. "Standard Specification for Ultra-High-Molecular Weight Polyethylene Powder and Fabricated Form for Surgical Implants". ASTM International, 2007. F648-07.
- 5. Stephen Kurtz, PhD, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement (San Diego: Elsevier Academic Press, 2004), p112.
- 6. Data on file at Wright.
- 7. Stephen Kurtz, PhD, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement (San Diego: Elsevier Academic Press, 2004), p45.
- 8. Stephen Kurtz, PhD, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement (San Diego: Elsevier Academic Press, 2004), p46.
- 9. Stephen Kurtz, PhD, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement (San Diego: Elsevier Academic Press, 2004), p44.
- 10. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A hip-simulator study. J Bone Joint Surg Am. Dec 2000;82-A(12):1708-1725.
- 11. Willie BM, Ashrafi S, Alajbegovic S, Burnett T, Bloebaum RD. Quantifying the effect of resin type and sterilization method on the degradation of ultrahigh molecular weight polyethylene after 4 years of real-time shelf aging. *J Biomed Mater Res A*. Jun 1 2004;69(3):477-489.

Wright Medical Technology, Inc. 5677 Airline Road Arlington, TN USA 38002 901.867.9971 800.238.7117 www.wmt.com Wright Medical EMEA Hoogoorddreef 5 1101 BA Amsterdam The Netherlands 011.31.20.545.0100 www.wmt-emea.com

[™]Trademarks and [®]Registered marks of Wright Medical Technology, Inc ©2011 Wright Medical Technology, Inc. All Rights Reserved.